Strain-engineered Artificial Atom as a Broad-spectrum Solar Energy Funnel

Applications for this technology are found in photovoltaics, light emission, photocatalysis, and photon-detection.  

Researchers

Ju Li / Ji Feng / Xiaofeng Qian

Departments: Department of Nuclear Science and Engineering
Technology Areas: Communication Systems: Wireless / Electronics & Photonics: Photonics
Impact Areas: Connected World

  • strain-engineered bandgaps
    United States of America | Granted | 9,595,624

Technology

This invention involves optoelectronic devices that can interact with light and facilitate the generation and collection of charge carriers, e.g., electrical current, associated with a broad range of wavelengths. Specifically, inhomogeneous strain as applied to atomically thin materials has been discovered to be an important vehicle to enable the collection and/or emission of a broad range of wavelengths as compared to prior materials operating at a single wavelength. This ability to interact with a range of wavelengths, as compared to a single wavelength, greatly increases the device's efficiency.In one example, an optoelectronic device may include a first optoelectronic material that is inhomogeneously strained. First and second charge carrier collectors are then electrically connected to the inhomogeneously strained material to collect charge carriers into the material to either generate a current or produce light. In addition to collecting and generating light, these materials can also be used to provide an engineered material for a range of different photocatalysis reactions using the same base material by simply adjusting the applied strain.Furthermore, the strong coupling between mechanical strain/stress and optoelectronic responses make these materials useful for local mechanical strain, stress, and force sensing via optical and electronic signals.  

Problem Addressed

Typical photovoltaic materials are only capable of collecting a single wavelength of radiation to produce a current. This restriction of typical devises inherently limits the possible efficacy of a photovoltaic device. Further, unlike atomically thin materials, typical bulk materials are unable to sustain large enough elastic strains to significantly affect their ability to absorb different wavelengths of light before the onset of plasticity or fracture.  

Advantages

  • Controlled band gap in optoelectric materials at a low cost
  • Multiple wavelengths of radiation can be utilized, thus increasing device efficiency
  • Multiple photocatalysis reactions can be facilitated using the same material by using different applied strains
  • Atomically thin membranes are a notable family of materials that exhibit ultrastrength qualities; for instance, they can resist inelastic relaxation up to a significant fraction of their ideal strength
  • Ultrathin local mechanical strain, stress, and force sensor with tunable ultrafine spatial resolution  

License this technology

Interested in this technology? Connect with our experienced licensing team to initiate the process.

Sign up for technology updates

Sign up now to receive the latest updates on cutting-edge technologies and innovations.