Lubricant-Impregnated Surfaces for Electrochemical Applications, Devices and Systems Using the Same

Lubricant-Impregnated Surfaces (LISs) can be used in a variety of applications from batteries to capacitor fabrication. For example, in flow batteries, controlled flow of the electrolyte and friction along the cell walls is very important. Introducing an LIS in this system increases controllability of electrolyte flow by minimizing the friction.

 

Researchers

Brian Solomon / Xinwei Chen / Yet-Ming Chiang / Kripa K Varanasi

Departments: Department of Materials Science and Engineering, Department of Mechanical Engineering
Technology Areas: Energy & Distribution: Energy Storage / Industrial Engineering & Automation: Manufacturing & Equipment
Impact Areas: Sustainable Future

  • lubricant-impregnated surfaces for electrochemical applications, and devices and systems using the same
    United States of America | Granted | 9,947,481

Technology

In order to form an LIS, first the lubricant must spontaneously impregnate the wall texture. Impregnation is, in short, dictated by the surface tension of the lubricant, surface tension of the solid, and the roughness of the solid. The solid is created through photolithography or chemical etching. For battery applications, the battery components (e.g., electrolyte, electrodes) must be substantially immiscible to establish a well-defined interphase with the lubricant. Additionally, the lubricant must be electrochemically and thermodynamically stable when mixed with any of the components of the electrochemical device. Using these conditions and methods, a lubricant impregnated surface is created and can be implemented in any electrochemical device where surface slipperiness is important. Finally, the LIS can be designed and selected to provide electronic or ionic or diffusional transport properties (e.g., LIS on a current collector, LIS on a separator structure).

Problem Addressed

Controlling flow and slipperiness is important to electromechanical device function and/or manufacturing. For example, capacitors are manufactured by filling an electrode cavity with a flowable electrode. An LIS would lower the driving pressure necessary to flow. Previous methods for slipperiness in electromechanical devices focused on superhydrophobic surfaces. Superhydrophobic surfaces are composed of solid and air; however, LISs are composed of solid and liquid lubricant, which makes them more robust and self-healing.

Advantages

  • Increases slipperiness in electrochemical devices
  • Increases efficiency of electrochemical device function and/or manufacturing

 

License this technology

Interested in this technology? Connect with our experienced licensing team to initiate the process.

Sign up for technology updates

Sign up now to receive the latest updates on cutting-edge technologies and innovations.