Multi Trap Ion Quantum Computing in a Cavity Mode

We propose a hardware architecture and protocol for connecting many local quantum processors contained within an optical cavity. The scheme is compatible with trapped ions or Rydberg arrays, and realizes teleported gates between any two qubits by distributing entanglement via single-photon transfers through a cavity. Heralding enables high-fidelity entanglement even for a cavity of moderate quality. For processors composed of trapped ions in a linear chain, a single cavity with realistic parameters successfully transfers photons every few 𝜇⁢s, increasing the interchain entanglement rate over 2 orders of magnitude beyond current methods and eliminating a major bottleneck for scaling trapped-ion systems. For one realistic scenario, we outline how to achieve the any-to-any entanglement of 20 ion chains containing a total of 500 qubits in 200 𝜇⁢s, with both fidelities and rates limited only by local operations and ion readout. For processors composed of Rydberg atoms, our method fully connects a large array of thousands of neutral atoms. The connectivity afforded by our architecture is extendable to tens of thousands of qubits using multiple overlapping cavities, expanding capabilities for noisy intermediate-scale quantum era algorithms and Hamiltonian simulations, as well as enabling more robust high-dimensional error-correcting schemes.

  •  

Researchers

Vladan Vuletic / Joshua Ramette / Josiah Sinclair

Departments: Department of Physics, Research Laboratory of Electronics
Technology Areas: Computer Science: Quantum Computing
Impact Areas: Advanced Materials

  • all-connected, cavity-mediated quantum computing with local quantum processors
    United States of America | Published application

License this technology

Interested in this technology? Connect with our experienced licensing team to initiate the process.

Sign up for technology updates

Sign up now to receive the latest updates on cutting-edge technologies and innovations.