Method for Manipulating Optical Phase of a Laser Beam

Binary-phase-shift-key, phase-modulated waveforms with gigahertz bandwidths, suitable for kilowatt-class fiber amplifiers, can be narrowed back to the source laser’s linewidth via second-harmonic, sum-frequency, or difference-frequency generation in a second-order nonlinear crystal. The spectrum of an optical signal phase-modulated with a pseudo-random bit sequence (PRBS) waveform recovers its original optical spectrum when frequency-doubled using second-harmonic generation (SHG). Conceptually, the PRBS waveform is cancelled by the SHG process, and the underlying laser spectrum is converted to the second-harmonic wavelength as though the PRBS modulation were not present. The same cancellation is possible with sum-frequency generation (SFG) and difference frequency generation (DFG), making it possible to construct high-power, narrow-linewidth lasers at wavelengths from the visible to the long-wave infrared. Using ytterbium-, erbium-, thulium-, and neodymium-doped fibers with SHG, SFG and DFG processes allows generation of high-power beams with very narrowband optical spectra and wavelengths from below 400 nm to beyond 5 µm.

Researchers

Departments: Lincoln Laboratory
Technology Areas: Communication Systems: Optical / Electronics & Photonics: Lasers
Impact Areas: Advanced Materials

  • manipulating the optical phase of a laser beam
    United States of America | Published application

License this technology

Interested in this technology? Connect with our experienced licensing team to initiate the process.

Sign up for technology updates

Sign up now to receive the latest updates on cutting-edge technologies and innovations.

More Technologies