Bi-Directional Porous Media Phase Change Heat Exchanger

A heat-storing battery for heating and cooling applications that can be recharged with waste heat. The technology provides a compact, high cycle-life cooling and heating strategy to provide on-demand climate control. Among other applications, the system could be used to extend the driving range of battery electric vehicles (BEVs) by providing heating or cooling without draining the on-board electric battery bank. The advanced thermo-adsorptive battery (ATB) could also be integrated into residential or commercial structures, where it would provide environmentally-friendly heating and cooling via the capture and reuse of waste heat.    

Researchers

Evelyn Wang / Ian McKay / Shankar Narayan

Departments: Department of Mechanical Engineering
Technology Areas: Energy & Distribution: Electrochemical Devices, Energy Storage
Impact Areas: Sustainable Future

  • bi-directional porous media phase change heat exchanger
    United States of America | Granted | 10,739,089

Problem Addressed

The energy storage densities of electric batteries are much lower than those of gasoline and other liquid fuels, and there are few effective alternatives for direct storage of heat. The use of traditional electrically-powered climate control systems severely limits the driving range of many BEVs. Additionally, electrically-powered heating and cooling systems for residential and commercial structures are a major cause of grid overload in many parts of the U.S.A.  

Technology

The technology uses novel zeolite and metal oxide framework adsorbent materials to achieve high vapor sorption capacities and sorption rates at low relative pressures, which can potentially increase the driving range of an EV by 30% compared to contemporary climate control technology. These zeolites are synthesized from the parent Sodium Y-type (NaY) zeolites, which are subjected to an aqueous solution allowing ion-exchange. They are then rinsed with deionized water and allowed to dry in ambient air. The ion-exchange and rinsing are performed multiple times depending on the desired final structure. Additionally, a methanol aqueous solution is used in these ATBs to prevent adsorbate freezing at low temperatures. Furthermore, the novel design of the thermal battery enhances heat and mass transport for most efficient utilization of the high-performance materials. The overall system design is flexible and modular, and the technology can be easily scaled to meet heating and cooling demands of large commercial and residential units.  

Advantages

  • Energy storage density: provides high-capacity heat storage with little or no electrical power consumption
  • Enhanced heat and mass transfer: offers rapid charging, controlled discharge and better adsorbent utilization than conventional adsorption-based climate control systems
  • Environmentally friendly: system can be recharged using waste heat, and uses water and alcohol rather than harmful and polluting HCFC refrigerants

Publications

"Adsorption-Based Thermal Batteries Could Help Boost EV Range by 40%." SAE International, August 30, 2013.

"Advanced Thermo-Adsorptive Battery." ARPA-E, September 29, 2011.

License this technology

Interested in this technology? Connect with our experienced licensing team to initiate the process.

Sign up for technology updates

Sign up now to receive the latest updates on cutting-edge technologies and innovations.