Very Large Mode Slab-coupled Optical Waveguide Laser and Amplifier
Technology #13919

Applications

Applications include materials processing, such as welding, drilling, cutting, annealing and brazing; laser pumping; free space optical communications; medical applications; and directed energy applications.

Problem Addressed

Scaling the spatial mode size to increase the output power of slab-coupled optical waveguide laser (SCOWL) is extremely difficult and can lead to mode collapse of the fundamental mode.

Technology

The invention is a very large mode (VLM) slab-coupled optical waveguide laser (SCOWL) which includes an upper waveguide region, lower waveguide region, and an active region positioned between them. The upper waveguide and lower waveguide regions are used for guiding the laser mode while the active region is arranged so etching into the VLM SCOWL is permitted to define the ridge waveguide structures, leaving the active region unetched. One or more mode control barrier layers are positioned adjacent to the active region. These mode control barrier layers are used to control the profile of the fundamental mode and prevent mode collapse of the laser mode.

Advantages

- Improved peak power
- Increased and scalable output power
- Implementable in different material systems (already Implemented in the InGaAs/AlGaAs/GaAs material system)

Categories For This Invention:

Lincoln Laboratory
Photonics
Sources

Intellectual Property:

Very large mode slab-coupled optical waveguide laser and amplifier
Issued US Patent
8,451,874
Inventors:
Joseph Donnelly
Robin Huang

External Links:
Lincoln Laboratory
https://www.ll.mit.edu/index.html

Image Gallery: