Header and Body 2

Problem Addressed

The global prevalence of contaminated water resources by organic pollutants, such as pesticides, dyes, pharmaceuticals, and endocrine disrupting compounds has raised concerns about potential deleterious effects on the environment and on human health. Electrochemically controlled processes, such as capacitive deionization are promising candidates for wastewater management and desalination. However, these processes rely on electrostatic interactions between the electrode and the target pollutant. These processes are not applicable to uncharged organic pollutants, which constitute the majority of industrial and municipal water contaminants, including dyes, pesticides, pharmaceuticals, and carcinogenic aromatics. High separation efficiencies for the removal of organics from water have been achieved using conventional processes such as adsorption, distillation, and solvent extraction, as well as more recent technologies such as advanced oxidation treatment and membrane separation. However, the overall separation processes inherently associated with these methods usually involve energy-intensive steps and/or environmentally unfriendly processes. This technology incorporates exquisite electrical control into separation of uncharged molecules from water and has higher energy efficiencies and lower environmental costs than established methods for separating neutral organics from water.