Header and Body 2

Problem Addressed

Advances in on-chip spectroscopy are resulting in improved chemical and biological sensing applications. Fourier Transform Infrared (FTIR) technology, a leading spectroscopy system, exhibits an enhanced signal-to-noise ratio over other spectroscopy designs by utilizing Fellgett’s advantage. To achieve this, FTIR spectrometers have a variable arm path length and use modulation of the index of refraction to enable spectral decomposition of light from the interferogram. However, this approach often requires discrete optical elements resulting in a costly and bulky design. In addition, it results in increased system complexity from mechanical moving parts and reduced system robustness. Many on-chip spectrometers use spectrum splitting, a much less effective spectrometry system, due to size and power constraints. These designs have a reduced signal-to-noise ratio because they lack the Fellgett advantage present in FTIR spectrometers.